7 Kirchhoff_s Rules Wheatstone bridge Meter Bridge
Kirchhoff’s Rules Wheatstone bridge Meter Bridge
Kirchhoff’s First Law − Junction Rule
- The algebraic sum of the currents meeting at a point in an electrical circuit is always zero.
I1, I2 I3, and I4
Convention:
Current towards the junction − positive
Current away from the junction − negative
I3 + (− I1) + (− I2) + (− I4) = 0
Kirchhoff’s Second Law − Loop Rule
- In a closed loop, the algebraic sum of the emf is equal to the algebraic sum of the products of the resistances and current flowing through them.
For closed part BACB,
E1 − E2 = I1R1 + I2 R2 − I3R3
For closed part CADC,
E2Â = I3R3Â + I4R4Â + I5R5
- R1,R2, R3, and R4 are the four resistances.
- Galvanometer (G) has a currentIg flowing through it at balanced condition,
Ig = 0
- Applying junction rule at B,
∴ I2 = I4
- Applying junction rule at D,
∴ I1 = I3
- Applying loop rule to closed loop ADBA,
- Applying loop rule to closed loop CBDC,
From equations (1) and (2),
(Balanced condition)
- Fora balanced bridge, the unknown resistance can be determined as:
Metre Bridge
- Consists of a 1 m long wire of uniform cross-section
- Construction of the metre bridge is shown in the above figure.
Let
R − Unknown resistance
S − Standard resistance
l1 − Distance from A
Rcm − Resistance of the wire per unit centimetre
Rcml1 − Resistance of length AD
Rcm (100 − l1) − Resistance of length DC
- From the figure, the balance condition gives