Chapter -2 **Inverse Trigonometric Functions edukalpclasses.com**

Exercise 2.1

Question 1:

 $\sin^{-1}\left(-\frac{1}{2}\right)$ Find the principal value of

Answer

Let
$$\sin^{-1}\left(-\frac{1}{2}\right) = y$$
.
Then $\sin y = -\frac{1}{2} = -\sin\left(\frac{\pi}{6}\right) = \sin\left(-\frac{\pi}{6}\right)$.

We know that the range of the principal value branch of sin⁻¹ is

 $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]_{\text{and sin}}\left(-\frac{\pi}{6}\right) = -\frac{1}{2}.$ sin Therefore, the principal value of **Question 2:** cos Find the principal value of Answer Let $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = y$. Then, $\cos y = \frac{\sqrt{3}}{2} = \cos\left(\frac{\pi}{6}\right)$.

We know that the range of the principal value branch of cos⁻¹ is

 $\left[0,\pi\right]$ and $\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$ $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ is $\frac{\pi}{6}$

Therefore, the principal value of

Question 3: Find the principal value of $cosec^{-1}$ (2) Answer

Chapter -2 Inverse Trigonometric Functions edukalpclasses.com

 $\operatorname{cosec} y = 2 = \operatorname{cosec} \left(\frac{\pi}{6} \right).$ Let $\operatorname{cosec}^{-1}(2) = y$. Then, We know that the range of the principal value branch of $\operatorname{cosec}^{-1}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$. $\operatorname{cosec}^{-1}(2)$ is $\frac{\pi}{4}$. Therefore, the principal value of **Question 4:** Find the principal value of $\tan^{-1}\left(-\sqrt{3}\right)$ Answer Let $\tan^{-1}(-\sqrt{3}) = y$. Then, $\tan y = -\sqrt{3} = -\tan \frac{\pi}{3} = \tan \left(-\frac{\pi}{3} \right)$ We know that the range of the principal value branch of tan⁻¹ is $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ and $\tan\left(-\frac{\pi}{3}\right)$ is $-\sqrt{3}$. Therefore, the principal value of $\tan^{-1}(\sqrt{3})$ is $\frac{\pi}{3}$. **Question 5:** $\cos^{-1}\left(-\frac{1}{2}\right)$ Find the principal value of Answer Let $\cos^{-1}\left(-\frac{1}{2}\right) = y$. Then, $\cos y = -\frac{1}{2} = -\cos\left(\frac{\pi}{3}\right) = \cos\left(\pi - \frac{\pi}{3}\right) = \cos\left(\frac{2\pi}{3}\right)$. We know that the range of the principal value branch of cos⁻¹ is $\left[0,\pi\right]$ and $\cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}$. Therefore, the principal value of $\cos^{-1}\left(-\frac{1}{2}\right)$ is $\frac{2\pi}{3}$.

Question 6:

Chapter -2 Inverse Trigonometric Functions edukalpclasses.com

Find the principal value of $\tan^{-1}(-1)$ Answer $\tan y = -1 = -\tan\left(\frac{\pi}{4}\right) = \tan\left(-\frac{\pi}{4}\right)$. Let $\tan^{-1}(-1) = y$. Then, We know that the range of the principal value branch of \tan^{-1} is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\tan\left(-\frac{\pi}{4}\right) = -1$. Therefore, the principal value of Question 7: Find the principal value of Answer Let $\sec^{-1}\left(\frac{2}{\sqrt{3}}\right) = y$. Then, $\sec y = \frac{2}{\sqrt{3}} = \sec\left(\frac{\pi}{6}\right)$. We know that the range of the principal value branch of \sec^{-1} is

$$\left[0,\pi\right] - \left\{\frac{\pi}{2}\right\}$$
 and $\sec\left(\frac{\pi}{6}\right) = \frac{2}{\sqrt{3}}$.

$$\sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$$
 is $\frac{\pi}{6}$.

Therefore, the principal value of

Question 8:

Find the principal value of $\cot^{-1}(\sqrt{3})$

Answer

Let
$$\cot^{-1}\left(\sqrt{3}\right) = y$$
. Then, $\cot y = \sqrt{3} = \cot\left(\frac{\pi}{6}\right)$.

Chapter -2 Inverse Trigonometric Functions edukalpclasses.com

We know that the range of the principal value branch of \cot^{-1} is $(0,\pi)$ and

 $\cot^{-1}\left(\sqrt{3}\right)$ is $\frac{\pi}{6}$.

$$\cot\left(\frac{\pi}{6}\right) = \sqrt{3}.$$

Therefore, the principal value of

Question 9:

 $\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$ Find the principal value of

Answer

Let
$$\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) = y$$
. Then, $\cos y = -\frac{1}{\sqrt{2}} = -\cos\left(\frac{\pi}{4}\right) = \cos\left(\pi - \frac{\pi}{4}\right) = \cos\left(\frac{3\pi}{4}\right)$.

We know that the range of the principal value branch of \cos^{-1} is $[0,\pi]$ and

cos

$$\cos\!\left(\frac{3\pi}{4}\right) = -\frac{1}{\sqrt{2}}$$

Therefore, the principal value of

Question 10:

Find the principal value of $\operatorname{cosec}^{-1}\left(-\sqrt{2}\right)$ Answer

Let
$$\operatorname{cosec}^{-1}\left(-\sqrt{2}\right) = y$$
. Then, $\operatorname{cosec} y = -\sqrt{2} = -\operatorname{cosec}\left(\frac{\pi}{4}\right) = \operatorname{cosec}\left(-\frac{\pi}{4}\right)$.

We know that the range of the principal value branch of cosec⁻¹ is

$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$$
 and $\operatorname{cosec}\left(-\frac{\pi}{4}\right) = -\sqrt{2}$.
Therefore, the principal value of $\operatorname{cosec}^{-1}\left(-\sqrt{2}\right)$ is $-\frac{\pi}{4}$.

Chapter -2 Inverse Trigonometric Functions edukalpclasses.com

Question 11: $\tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{2}\right)$ Find the value of Answer Let $\tan^{-1}(1) = x$. Then, $\tan x = 1 = \tan \frac{\pi}{4}$. $\therefore \tan^{-1}(1) = \frac{\pi}{4}$ Let $\cos^{-1}\left(-\frac{1}{2}\right) = y$. Then, $\cos y = -\frac{1}{2} = -\cos\left(\frac{\pi}{3}\right) = \cos\left(\pi - \frac{\pi}{3}\right) = \cos\left(\frac{2\pi}{3}\right)$. $\therefore \cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$ Let $\sin^{-1}\left(-\frac{1}{2}\right) = z$. Then, $\sin z = \frac{1}{2} = -\sin\left(\frac{\pi}{6}\right) = \sin\left(\frac{\pi}{6}\right)$. $\therefore \sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$ $\therefore \tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{2}\right)$ $= \frac{\pi}{4} + \frac{2\pi}{3} - \frac{\pi}{6}$ $= \frac{3\pi + 8\pi - 2\pi}{12} = \frac{9\pi}{12} = \frac{3\pi}{4}$

Question 12:

Find the value of
$$\cos^{-1}\left(\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right)$$

Answer

Let
$$\cos^{-1}\left(\frac{1}{2}\right) = x$$
. Then, $\cos x = \frac{1}{2} = \cos\left(\frac{\pi}{3}\right)$.
 $\therefore \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}$
Let $\sin^{-1}\left(\frac{1}{2}\right) = y$. Then, $\sin y = \frac{1}{2} = \sin\left(\frac{\pi}{6}\right)$.
 $\therefore \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$
 $\therefore \cos^{-1}\left(\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} + \frac{2\pi}{6} = \frac{\pi}{3} + \frac{\pi}{3} = \frac{2\pi}{3}$

Question 13:

Find the value of if $\sin^{-1} x = y$, then

(A) $0 \le y \le \pi$ (B) $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

(c) $0 < y < \pi$ (D) $-\frac{\pi}{2} < y < \frac{\pi}{2}$

Answer

It is given that $\sin^{-1} x = y$.

We know that the range of the principal value branch of \sin^{-1} is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Therefore,
$$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$$
.

Question 14:

Find the value of $\tan^{-1}\sqrt{3} - \sec^{-1}(-2)$ is equal to

(A)
$$\sqcap$$
 (B) $-\frac{\pi}{3}$ (C) $\frac{\pi}{3}$ (D) $\frac{2\pi}{3}$
Answer

Chapter -2 Inverse Trigonometric Functions edukalpclasses.com

Let $\tan^{-1}\sqrt{3} = x$. Then, $\tan x = \sqrt{3} = \tan\frac{\pi}{3}$. We know that the range of the principal value branch of \tan^{-1} is $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$. $\therefore \tan^{-1}\sqrt{3} = \frac{\pi}{3}$ Let $\sec^{-1}(-2) = y$. Then, $\sec y = -2 = -\sec\left(\frac{\pi}{3}\right) = \sec\left(\pi - \frac{\pi}{3}\right) = \sec\left(\frac{2\pi}{3}\right)$. We know that the range of the principal value branch of \sec^{-1} is $[0,\pi] - \left\{\frac{\pi}{2}\right\}$. $\therefore \sec^{-1}(-2) = \frac{2\pi}{3}$ Hence, $\tan^{-1}(\sqrt{3}) - \sec^{-1}(-2) = \frac{\pi}{3} - \frac{2\pi}{3} = -\frac{\pi}{3}$