Exercise 4.3

Question 1:

Find area of the triangle with vertices at the point given in each of the following:

(iii)
$$(-2, -3)$$
, $(3, 2)$, $(-1, -8)$

Answer

(i) The area of the triangle with vertices (1, 0), (6, 0), (4, 3) is given by the relation,

$$\Delta = \frac{1}{2} \begin{vmatrix} 1 & 0 & 1 \\ 6 & 0 & 1 \\ 4 & 3 & 1 \end{vmatrix}$$

$$= \frac{1}{2} [1(0-3) - 0(6-4) + 1(18-0)] \text{ (cational Service)}$$

$$= \frac{1}{2} [-3 + 18] = \frac{15}{2} \text{ square units}$$

(ii) The area of the triangle with vertices (2, 7), (1, 1), (10, 8) is given by the relation,

$$\Delta = \frac{1}{2} \begin{vmatrix} 2 & 7 & 1 \\ 1 & 1 & 1 \\ 10 & 8 & 1 \end{vmatrix}$$

$$= \frac{1}{2} \left[2(1-8) - 7(1-10) + 1(8-10) \right]$$

$$= \frac{1}{2} \left[2(-7) - 7(-9) + 1(-2) \right]$$

$$= \frac{1}{2} \left[-14 + 63 - 2 \right] = \frac{1}{2} \left[-16 + 63 \right]$$

$$= \frac{47}{2} \text{ square units}$$

(iii) The area of the triangle with vertices (-2, -3), (3, 2), (-1, -8) is given by the relation,

$$\Delta = \frac{1}{2} \begin{vmatrix} -2 & -3 & 1 \\ 3 & 2 & 1 \\ -1 & -8 & 1 \end{vmatrix}$$

$$= \frac{1}{2} \left[-2(2+8) + 3(3+1) + 1(-24+2) \right]$$

$$= \frac{1}{2} \left[-2(10) + 3(4) + 1(-22) \right]$$

$$= \frac{1}{2} \left[-20 + 12 - 22 \right]$$

$$= -\frac{30}{2} = -15$$

Hence, the area of the triangle is

Hence, the points A, B, and C are collinear.

Question 3:

Find values of k if area of triangle is 4 square units and vertices are

(i)
$$(k, 0)$$
, $(4, 0)$, $(0, 2)$ (ii) $(-2, 0)$, $(0, 4)$, $(0, k)$

Answer

We know that the area of a triangle whose vertices are (x_1, y_1) , (x_2, y_2) , and (x_3, y_3) is the absolute value of the determinant (Δ) , where

$$\Delta = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

It is given that the area of triangle is 4 square units.

$$..\Delta = \pm 4.$$

(i) The area of the triangle with vertices (k, 0), (4, 0), (0, 2) is given by the relation,

$$\Delta = \begin{bmatrix} k & 0 & 1 \\ 4 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix}$$

$$= \frac{1}{2} [k(0-2)-0(4-0)+1(8-0)]$$
$$= \frac{1}{2} [-2k+8] = -k+4$$

$$\therefore -k + 4 = \pm 4$$

When
$$-k + 4 = -4$$
, $k = 8$.

When
$$-k + 4 = 4$$
, $k = 0$.

Hence,
$$k = 0, 8$$
.

(ii) The area of the triangle with vertices (-2, 0), (0, 4), (0, k) is given by the relation,

$$\Delta = \begin{bmatrix} -2 & 0 & 1 \\ 0 & 4 & 1 \\ 0 & k & 1 \end{bmatrix}$$

$$= \frac{1}{2} \left[-2(4-k) \right]$$
$$= k-4$$

$$\therefore k - 4 = \pm 4$$

When k - 4 = -4, k = 0.

When k - 4 = 4, k = 8.

Hence, k = 0, 8.

Question 4:

- (i) Find equation of line joining (1, 2) and (3, 6) using determinants
- (ii) Find equation of line joining (3, 1) and (9, 3) using determinants Answer
- (i) Let P (x, y) be any point on the line joining points A (1, 2) and B (3, 6). Then, the points A, B, and P are collinear. Therefore, the area of triangle ABP will be zero.

$$\frac{1}{2} \begin{vmatrix} 1 & 2 & 1 \\ 3 & 6 & 1 \\ x & y & 1 \end{vmatrix} = 0$$

$$\Rightarrow \frac{1}{2} [1(6-y)-2(3-x)+1(3y-6x)] = 0$$

$$\Rightarrow 6 - y - 6 + 2x + 3y - 6x = 0$$

$$\Rightarrow 2y - 4x = 0$$

$$\Rightarrow y = 2x$$

Hence, the equation of the line joining the given points is y = 2x.

(ii) Let P (x, y) be any point on the line joining points A (3, 1) and

B (9, 3). Then, the points A, B, and P are collinear. Therefore, the area of triangle ABP will be zero.

$$\frac{1}{2} \begin{vmatrix} 3 & 1 & 1 \\ 9 & 3 & 1 \\ x & y & 1 \end{vmatrix} = 0$$

$$\Rightarrow \frac{1}{2} \left[3(3-y) - 1(9-x) + 1(9y-3x) \right] = 0$$

$$\Rightarrow 9 - 3y - 9 + x + 9y - 3x = 0$$

$$\Rightarrow 6y - 2x = 0$$

$$\Rightarrow x - 3y = 0$$

Hence, the equation of the line joining the given points is x - 3y = 0.

Question 5:

If area of triangle is 35 square units with vertices (2, -6), (5, 4), and (k, 4). Then k is

Answer

Answer: D

The area of the triangle with vertices (2, -6), (5, 4), and (k, 4) is given by the relation,

$$\Delta = \frac{1}{2} \begin{vmatrix} 2 & -6 & 1 \\ 5 & 4 & 1 \\ k & 4 & 1 \end{vmatrix}$$

$$= \frac{1}{2} \Big[2(4-4) + 6(5-k) + 1(20-4k) \Big]$$

$$= \frac{1}{2} \Big[30 - 6k + 20 - 4k \Big]$$

$$= \frac{1}{2} \Big[50 - 10k \Big]$$

$$= 25 - 5k$$

It is given that the area of the triangle is ± 35 .

Therefore, we have:

$$\Rightarrow 25 - 5k = \pm 35$$
$$\Rightarrow 5(5 - k) = \pm 35$$
$$\Rightarrow 5 - k = \pm 7$$

Class 12

When 5 - k = -7, k = 5 + 7 = 12.

When 5 - k = 7, k = 5 - 7 = -2.

Hence, k = 12, -2.

The correct answer is D.

