Exercise 10.4

Question 1:

Find

$$\left|\vec{a}\times\vec{b}\right|$$
, if $\vec{a}=\hat{i}-7\hat{j}+7\hat{k}$ and $\vec{b}=3\hat{i}-2\hat{j}+2\hat{k}$

Answer

We have,

 $\vec{a} = \hat{i} - 7\hat{j} + 7\hat{k}$ and $\vec{b} = 3\hat{i} - 2\hat{j} + 2\hat{k}$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -7 & 7 \\ 3 & -2 & 2 \end{vmatrix}$$

= $\hat{i} (-14+14) - \hat{j} (2-21) + \hat{k} (-2+21) = 19\hat{j} + 19\hat{k}$
 $\therefore |\vec{a} \times \vec{b}| = \sqrt{(19)^2 + (19)^2} = \sqrt{2 \times (19)^2} = 19\sqrt{2}$

Question 2:

Find a unit vector perpendicular to each of the vector $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$, where $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$

Answer

We have,

$$\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}_{and} \vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$$

$$\therefore \vec{a} + \vec{b} = 4\hat{i} + 4\hat{j}, \ \vec{a} - \vec{b} = 2\hat{i} + 4\hat{k}$$

$$\left(\vec{a} + \vec{b}\right) \times \left(\vec{a} - \vec{b}\right) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 4 & 0 \\ 2 & 0 & 4 \end{vmatrix} = \hat{i}(16) - \hat{j}(16) + \hat{k}(-8) = 16\hat{i} - 16\hat{j} - 8\hat{k}$$

$$\therefore \left| \left(\vec{a} + \vec{b}\right) \times \left(\vec{a} - \vec{b}\right) \right| = \sqrt{16^2 + (-16)^2 + (-8)^2}$$

$$= \sqrt{2^2 \times 8^2 + 2^2 \times 8^2 + 8^2}$$

$$= 8\sqrt{2^2 + 2^2 + 1} = 8\sqrt{9} = 8 \times 3 = 24$$

Chapter - 10 Vector Algebra

edukalpclasses.com

Hence, the unit vector perpendicular to each of the vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ is given by the relation,

$$=\pm \frac{\left(\vec{a}+\vec{b}\right) \times \left(\vec{a}-\vec{b}\right)}{\left|\left(\vec{a}+\vec{b}\right) \times \left(\vec{a}-\vec{b}\right)\right|} = \pm \frac{16\hat{i}-16\hat{j}-8\hat{k}}{24}$$
$$=\pm \frac{2\hat{i}-2\hat{j}-\hat{k}}{3} = \pm \frac{2}{3}\hat{i} \mp \frac{2}{3}\hat{j} \mp \frac{1}{3}\hat{k}$$

acational Se.

Question 3:

If a unit vector \vec{a} makes an $\frac{\pi}{3}$ with $\hat{i}, \frac{\pi}{4}$ angle with \hat{j} and an acute angle θ with \hat{k} , then find θ and hence, the compounds of

Answer

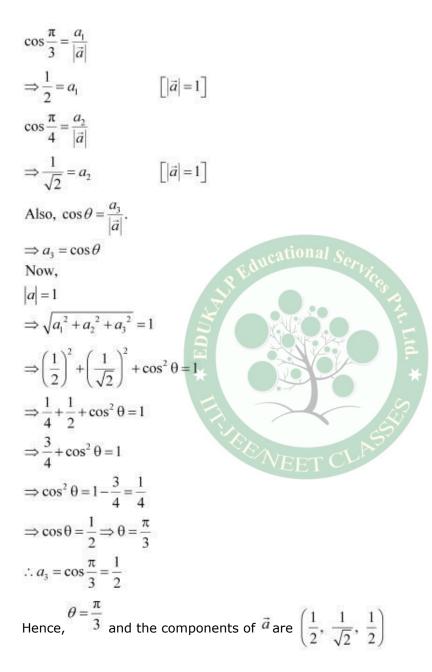
Let unit vector a have (a₁, a₂, a₃) components.

$$\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$$

Since *a* is a unit vector, $|\vec{a}| = 1$.

Also, it is given that \vec{a} makes angles $\frac{\pi}{3}$ with $\hat{i}, \frac{\pi}{4}$ with \hat{j} , and an acute angle θ with

 \hat{k} . Then, we have:



Class 12

Chapter - 10 Vector Algebra

edukalpclasses.com

Question 4:

Show that

$$(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) = 2(\vec{a} \times \vec{b})$$

Answer
 $(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b})$
 $= (\vec{a} - \vec{b}) \times \vec{a} + (\vec{a} - \vec{b}) \times \vec{b}$
 $= \vec{a} \times \vec{a} - \vec{b} \times \vec{a} + \vec{a} \times \vec{b} - \vec{b} \times \vec{b}$

 $=\vec{0}+\vec{a}\times\vec{b}+\vec{a}\times\vec{b}-\vec{0}$

[By distributivity of vector product over addition] [Again, by distributivity of vector product over addition]

Question 5:

 $=2\vec{a}\times\vec{b}$

Find λ and μ if Answer $(2\hat{i}+6\hat{j}+27\hat{k}) \times (\hat{i}+\lambda\hat{j}+\mu\hat{k}) = \bar{0}$ $\begin{vmatrix}\hat{i} & \hat{j} & \hat{k} \\ 2 & 6 & 27 \\ 1 & \lambda & \mu\end{vmatrix} = 0\hat{i}+0\hat{j}+0\hat{k}$ $\Rightarrow \hat{i}(6\mu-27\lambda) - \hat{j}(2\mu-27) + \hat{k}(2\lambda-6) = 0\hat{i}+0\hat{j}+0\hat{k}$

On comparing the corresponding components, we have:

edukalpclasses.com

 $6\mu - 27\lambda = 0$ $2\mu - 27 = 0$ $2\lambda - 6 = 0$ Now, $2\lambda - 6 = 0 \Longrightarrow \lambda = 3$ $2\mu - 27 = 0 \Rightarrow \mu = \frac{27}{2}$ Hence, $\lambda = 3$ and $\mu = \frac{27}{2}$. **Question 6:** Given that $\vec{a}\cdot\vec{b}=0$ and $\vec{a}\times\vec{b}=\vec{0}$ What can you conclude about the vectors a and \vec{b} ? Answer $\vec{a} \cdot \vec{b} = 0$ Then, (i) Either $|\vec{a}| = 0$ or $|\vec{b}| = 0$, or $\vec{a} \perp \vec{b}$ (in case \vec{a} and \vec{b} are non-zero) $\vec{a} \times \vec{b} = 0$ (ii) Either $|\vec{a}| = 0$ or $|\vec{b}| = 0$, or $\vec{a} \parallel \vec{b}$ (in case \vec{a} and \vec{b} are non-zero) But, \vec{a} and \vec{b} cannot be perpendicular and parallel simultaneously. Hence, $|\vec{a}| = 0$ or $|\vec{b}| = 0$

Question 7:

Let the vectors \vec{a} , \vec{b} , \vec{c} given as $a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, $b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$, $c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$

Then show that $= \vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$

Answer

$$\begin{aligned} \vec{a} &= a_{1}\hat{i} + a_{2}\hat{j} + a_{3}\hat{k}, \ \vec{b} &= b_{1}\hat{i} + b_{2}\hat{j} + b_{3}\hat{k}, \ \vec{c} &= c_{1}\hat{i} + c_{2}\hat{j} + c_{3}\hat{k} \\ (\vec{b} + \vec{c}) &= (b_{1} + c_{1})\hat{i} + (b_{2} + c_{2})\hat{j} + (b_{3} + c_{3})\hat{k} \\ \text{Now,} \ \vec{a} \times (\vec{b} + \vec{c}) \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} + c_{1} & b_{2} + c_{2} & b_{3} + c_{3} \end{vmatrix} \\ &= \hat{i} \Big[a_{2}(b_{3} + c_{3}) - a_{3}(b_{2} + c_{2}) \Big] - \hat{j} \Big[a_{1}(b_{3} + a_{3}) - a_{3}(b_{1} + c_{1}) \Big] + \hat{k} \Big[a_{1}(b_{2} + c_{2}) - a_{2}(b_{1} + c_{1}) \Big] \\ &= \hat{i} \Big[a_{2}b_{3} + a_{2}c_{3} - a_{3}b_{2} - a_{3}c_{2} \Big] + \hat{j} \Big[-a_{1}b_{3} - a_{4}c_{3} + a_{3}b_{5} + a_{3}c_{1} \Big] + \hat{k} \Big[a_{1}b_{2} + a_{1}c_{2} - a_{2}b_{1} - a_{2}c_{1} \Big] \dots (1) \\ &= \hat{i} \Big[a_{2}b_{3} - a_{3}b_{2} - a_{3}c_{2} \Big] + \hat{j} \Big[b_{1}a_{3} - a_{1}b_{3} \Big] + \hat{k} \Big[a_{1}b_{2} - a_{2}b_{1} \Big] \quad (2) \\ &= \hat{i} \Big[a_{2}b_{3} - a_{3}b_{2} \Big] + \hat{j} \Big[b_{1}a_{3} - a_{1}b_{3} \Big] + \hat{k} \Big[a_{1}b_{2} - a_{2}b_{1} \Big] \quad (2) \\ &= \hat{i} \Big[a_{2}c_{3} - a_{3}b_{2} \Big] + \hat{j} \Big[a_{3}c_{1} - a_{1}c_{3} \Big] + \hat{k} \Big[a_{2}c_{2} - a_{2}c_{1} \Big] \quad (3) \end{aligned}$$

On adding (2) and (3), we get:

$$(\vec{a} \times \vec{b}) + (\vec{a} \times \vec{c}) = \hat{i} [a_2 b_3 + a_2 c_3 - a_3 b_2 - a_3 c_2] + \hat{j} [b_1 a_3 + a_3 c_1 - a_1 b_3 - a_1 c_3] + \hat{k} [a_1 b_2 + a_1 c_2 - a_2 b_1 - a_2 c_1]$$
(4)

edukalpclasses.com

Now, from (1) and (4), we have: $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$

Hence, the given result is proved.

Question 8:

If either $\vec{a} = \vec{0}$ or $\vec{b} = \vec{0}$, then $\vec{a} \times \vec{b} = \vec{0}$.

Is the converse true? Justify your answer with an example. Answer

Take any parallel non-zero vectors so that $\vec{a} \times \vec{b} = \vec{0}$. Let $\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}$, $\vec{b} = 4\hat{i} + 6\hat{j} + 8\hat{k}$.

Then,

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 4 & 6 & 8 \end{vmatrix} = \hat{i} (24 - 24) - \hat{j} (16 - 16) + \hat{k} (12 - 12) = 0\hat{i} + 0\hat{j} + 0\hat{k} = \vec{0}$$

It can now be observed that:
$$|\vec{a}| = \sqrt{2^2 + 3^2 + 4^2} = \sqrt{29}$$
$$\therefore \vec{a} \neq \vec{0}$$
$$|\vec{b}| = \sqrt{4^2 + 6^2 + 8^2} = \sqrt{116}$$

 $\therefore \vec{b} \neq \vec{0}$

Hence, the converse of the given statement need not be true.

Question 9:

Find the area of the triangle with vertices A (1, 1, 2), B (2, 3, 5) and C (1, 5, 5). Answer

The vertices of triangle ABC are given as A (1, 1, 2), B (2, 3, 5), and C (1, 5, 5).

The adjacent sides \overrightarrow{AB} and \overrightarrow{BC} of $\triangle ABC$ are given as:

$$\overrightarrow{\text{AB}} = (2-1)\hat{i} + (3-1)\hat{j} + (5-2)\hat{k} = \hat{i} + 2\hat{j} + 3\hat{k}$$
$$\overrightarrow{\text{BC}} = (1-2)\hat{i} + (5-3)\hat{j} + (5-5)\hat{k} = -\hat{i} + 2\hat{j}$$

Class 12

Area of
$$\triangle ABC = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{BC}|$$

 $\overrightarrow{AB} \times \overrightarrow{BC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ -1 & 2 & 0 \end{vmatrix} = \hat{i} (-6) - \hat{j} (3) + \hat{k} (2+2) = -6\hat{i} - 3\hat{j} + 4\hat{k}$
 $\therefore |\overrightarrow{AB} \times \overrightarrow{BC}| = \sqrt{(-6)^2 + (-3)^2 + 4^2} = \sqrt{36 + 9 + 16} = \sqrt{61}$

Hence, the area of $\triangle ABC$ is $\frac{\sqrt{61}}{2}$ square units.

Question 10:

Find the area of the parallelogram whose adjacent sides are determined by the vector $\vec{a} = \hat{i} - \hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} - 7\hat{j} + \hat{k}$

Answer

The area of the parallelogram whose adjacent sides are \vec{a} and \vec{b} is $\vec{a} \times \vec{b}$

Adjacent sides are given as:

.

$$\vec{a} = \hat{i} - \hat{j} + 3\hat{k} \text{ and } \vec{b} = 2\hat{i} - 7\hat{j} + \hat{k}$$

$$\therefore \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 3 \\ 2 & -7 & 1 \end{vmatrix} = \hat{i} (-1 + 21) - \hat{j} (1 - 6) + \hat{k} (-7 + 2) = 20\hat{i} + 5\hat{j} - 5\hat{k}$$

$$\left| \vec{a} \times \vec{b} \right| = \sqrt{20^2 + 5^2 + 5^2} = \sqrt{400 + 25 + 25} = 15\sqrt{2}$$

Hence, the area of the given parallelogram is $15\sqrt{2}$ square units

Question 11:

Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}| = 3$ and $|\vec{b}| = \frac{\sqrt{2}}{3}$, then $\vec{a} \times \vec{b}$ is a unit vector, if the angle between \vec{a} and \vec{b} is (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$ Answer $|\vec{a}| = 3$ and $|\vec{b}| = \frac{\sqrt{2}}{300}$ cational Sector It is given that We know that $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}$, where is a unit vector perpendicular to both \vec{a} and \vec{b} and θ is the angle between \vec{a} and \vec{b} . Now, $\vec{a} \times \vec{b}$ is a unit vector if $|\vec{a} \times \vec{b}| = 1$ $\left|\vec{a} \times \vec{b}\right| = 1$ $\Rightarrow \left| \left| \vec{a} \right| \left| \vec{b} \right| \sin \theta \, \hat{n} \right| = 1$ $\Rightarrow |\vec{a}| |\vec{b}| |\sin \theta| = 1$ $\Rightarrow 3 \times \frac{\sqrt{2}}{2} \times \sin \theta = 1$ $\Rightarrow \sin \theta = \frac{1}{\sqrt{2}}$ $\Rightarrow \theta = \frac{\pi}{4}$

Hence, $\vec{a} \times \vec{b}$ is a unit vector if the angle between \vec{a} and \vec{b} is $\frac{\pi}{4}$. The correct answer is B.

Chapter - 10 Vector Algebra

edukalpclasses.com

Question 12:

Area of a rectangle having vertices A, B, C, and D with position vectors

$$-\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}, \ \hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}, \ \hat{i} - \frac{1}{2}\hat{j} + 4\hat{k} \text{ and } -\hat{i} - \frac{1}{2}\hat{j} + 4\hat{k} \text{ respectively is}$$
(A) $\frac{1}{2}$
(B) 1
(C) 2
(D) 4

Answer

The position vectors of vertices A, B, C, and D of rectangle ABCD are given as:

$$\overrightarrow{OA} = -\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}, \ \overrightarrow{OB} = \hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}, \ \overrightarrow{OC} = \hat{i} - \frac{1}{2}\hat{j} + 4\hat{k}, \ \overrightarrow{OD} = -\hat{i} - \frac{1}{2}\hat{j} + 4\hat{k}$$

The adjacent sides \overrightarrow{AB} and \overrightarrow{BC} of the given rectangle are given as:

$$\overrightarrow{AB} = (1+1)\hat{i} + \left(\frac{1}{2} - \frac{1}{2}\right)\hat{j} + (4-4)\hat{k} = 2\hat{i}$$

$$\overrightarrow{BC} = (1-1)\hat{i} + \left(-\frac{1}{2} - \frac{1}{2}\right)\hat{j} + (4-4)\hat{k} = -\hat{j}$$

$$\therefore \overrightarrow{AB} \times \overrightarrow{BC} = \begin{vmatrix}\hat{i} & \hat{j} & \hat{k} \\ 2 & 0 & 0 \\ 0 & -1 & 0\end{vmatrix} = \hat{k}(-2) = -2\hat{k}$$

$$\overrightarrow{EET} CLASSING
$$\overrightarrow{AB} \times \overrightarrow{AC} = \sqrt{(-2)^2} = 2$$$$

Now, it is known that the area of a parallelogram whose adjacent sides are \vec{a} and \vec{b} is $\left| \vec{a} \times \vec{b} \right|$

Hence, the area of the given rectangle is $|\overrightarrow{AB} \times \overrightarrow{BC}| = 2$ square units. The correct answer is C.