Chapter- 2 Polynomials

Exerise 2.1

1. The graphs of y = p(x) are given in figure below, for some polynomials p(x). Find the number of zeroes of p(x), in each case.

Chapter- 2 Polynomials

- **Sol.** (i) As the graph of polynomial does not meet x-axis, so the polynomial has no zeroes.
 - (*ii*) As the graph of polynomial cuts (meets) x-axis only once, so the polynomial has exactly one zero.
 - (*iii*) As the graph of polynomial cuts (meets) x-axis thrice, so the polynomial has three zeroes.
 - (*iv*) As the graph of polynomial cuts (meets) *x*-axis twice, so the polynomial has exactly two zeroes.
 - (v) As the graph of polynomial cuts (meets) x-axis four times, so the polynomial has four zeroes.
 - (vi) As the graph of polynomial cuts (meets) x-axis three times, so the polynomial has three zeroes.

Chapter- 2 Polynomials

Exerise 2.2

1.	Fine	d the zeroes of the following quadratic polynomials and	
	veri	fy the relationship between the zeroes and the	
	coef	ficients.	
	(<i>i</i>)	$x^2 - 2x - 8$ (ii) $4s^2 - 4s + 1$ (iii) $6x^2 - 3 - 7x$	
	(iv)	$4u^2 + 8u$ (v) $t^2 - 15$ (vi) $3x^2 - x - 4$	
Sol.	(i)	Consider polynomial $x^2 - 2x - 8 = (x - 4)(x + 2)$	
		For zeroes, $x - 4 = 0$, $x + 2 = 0$	
		$\Rightarrow x = 4, -2$	
	Zeroes of the polynomial are 4 and -2 .		
	Sum of zeroes = $4 + (-2) = 2$		
	- C $-$ (-2) $-$ Coefficient of x		
		$=$ $\frac{1}{1}$ $=$ $\frac{1}{\text{Coefficient of } x^2}$	
		Product of zeroes = $4 \times (-2) = -8$	
		$=\frac{-8}{-8}$ = Constant term	
		\square Coefficient of x^2	
		Hence verified.	
	(ii)	Consider polynomial $4s^2 - 4s + 1 = (2s - 1)^2$	
		For zeroes, $4s^2 - 4s + 1 = 0$	
		$\therefore \qquad (2s-1)^2 = 0$	
		VEET CV 1	
		$\Rightarrow \qquad 2s-1=0 \Rightarrow s=\frac{1}{2}.$	
		\therefore Polynomial has equal zeroes, <i>i.e.</i> , $\frac{1}{2}$ and $\frac{1}{2}$.	
		Sum of zeroes = $\frac{1}{2} + \frac{1}{2} = 1 = \frac{4}{4}$	
		$= - \frac{(-4)}{4} = - \frac{\text{Coefficient of } s}{\text{Coefficient of } s^2}$	
		Product of zeroes = $\frac{1}{2}$. $\frac{1}{2}$ = $\frac{1}{4}$ = $\frac{\text{Constant term}}{\text{Coefficient of }s^2}$.	
		Hence verified.	
	(iii)	Consider polynomial $6x^2 - 3 - 7x = 6x^2 - 7x - 3$	
		$= 6x^{2} - 9x + 2x - 3 = 3x(2x - 3) + 1(2x - 3)$	
		-(2r-3)(3r+1)	
		$= (\Delta n - 0)(0n + 1)$	

For more study materials login to edukalpclasses.com

Chapter- 2 Polynomials

For zeroes, 2x - 3 = 0, 3x + 1 = 0. $\Rightarrow x = \frac{3}{2}, -\frac{1}{3}$ \Rightarrow Zeroes of polynomial are $\frac{3}{2}$ and $-\frac{1}{3}$. Sum of zeroes = $\frac{3}{2} - \frac{1}{3} = \frac{7}{6} = \frac{-(-7)}{6}$ $= -\frac{\text{Coefficient of } x}{\text{Coefficient of } r^2}$ Product of zeroes = $\frac{3}{2} \times \frac{(-1)}{2}$ $=\frac{-1}{2}=\frac{-3}{6}=\frac{\text{Constant term}}{\text{Coefficient of }x^2}$. Hence verified. (iv) Consider polynomial $4u^2 + 8u = 4u(u + 2)$. 4u(u+2) = 0For zeroes, u = 0 or u + 2 = 0 \Rightarrow Zeroes of the polynomial are 0 and -2. ÷. Sum of zeroes = $0 + (-2) = -2 = \frac{-8}{4}$ $= \frac{-\text{Coefficient of } u}{\text{Coefficient of } u^2}$ Product of zeroes = $0 \times (-2) = 0 = \frac{0}{4}$ $= \frac{\text{Constant term}}{\text{Coefficient of } u^2}$ Hence verified. (v) Consider polynomial $t^2 - 15 = (t - \sqrt{15})(t + \sqrt{15})$ For zeroes, $(t - \sqrt{15}) (t + \sqrt{15}) = 0$ $\Rightarrow t - \sqrt{15} = 0, t + \sqrt{15} = 0$ \Rightarrow $t = \sqrt{15}$, $t = -\sqrt{15}$

 \therefore Zeroes of the polynomial are $\sqrt{15}$ and $-\sqrt{15}$.

4

Chapter- 2 Polynomials

Hence verified.

2. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

(i)
$$\frac{1}{4}$$
, -1 (ii) $\sqrt{2}$, $\frac{1}{3}$ (iii) 0, $\sqrt{5}$
(iv) 1, 1 (v) $-\frac{1}{4}$, $\frac{1}{4}$ (vi) 4, 1.

Sol. (*i*) Let polynomial be $f(x) = ax^2 + bx + c$...(*i*)

For more study materials login to edukalpclasses.com

Chapter- 2 Polynomials

	Sum of zeroes	$=\frac{1}{4}=-\frac{(-1)}{4}=-\frac{b}{a}$	(ii)			
	Product of zeroes	$= -1 = \frac{-4}{4} = \frac{c}{a}$	(<i>iii</i>)			
	From equations (<i>ii</i>) and (<i>iii</i>), we get a = 4, b = -1, c = -4.					
	Substituting these values in equation (i) , we get					
	Polynomial $f(x) = 4x^2 - x - 4$. We can have infinite such polynomials as $f(x) = k(4x - x - 4)$, k is a real number.					
(ii)	Let polynomial be $f(x)$	$= ax^2 + bx + c$	(i)			
	Sum of zeroes	$=\sqrt{2} = -\frac{(-3\sqrt{2})}{3}$				
		$=-\frac{b}{a}$	(ii)			
	Product of zeroes	$=\frac{1}{3}=\frac{c}{a}$	(iii)			
	From equations (ii) and	d (iii), we get				
	a = 3, b	$= -3\sqrt{2}$, $c = 1$.				
	Substituting these values in equation (i), we get					
	Polynomial $f(x) = 3x^2$	$-3\sqrt{2}x + 1.$				
	or $f(x) = k(3x^2 - 3\sqrt{2})$	$\overline{2}x + 1$), k is a real number	er.			
(iii)	Let polynomial be $f(x)$	$= ax^2 + bx + c$	(i)			
	Sum of zeroes	$= 0 = - \frac{(-0)}{1} = - \frac{b}{a}$	(ii)			
	Product of zeroes	$= \sqrt{5} = \frac{\sqrt{5}}{1} = \frac{c}{a}$	(<i>iii</i>)			
	From equations (ii) and	d (iii), we get				
	a = 1, b	$= 0, c = \sqrt{5}$				
	Substituting these values in equation (i) , we get					
	Polynomial $f(x) = x^2 +$	$\sqrt{5}$.				
	or $f(x) = k(x^2 + \sqrt{5})$,	k is a real number.				
		motoriole le sie te				

For more study materials login to edukalpclasses.com

Chapter- 2 Polynomials

(iv)	Let polynomial be $f(x) = ax^2 + bx + c$	(<i>i</i>)			
	Sum of zeroes $= 1 = \frac{1}{1} = -\frac{(-1)}{1}$				
	$= - \frac{b}{a}$	(ii)			
	Product of zeroes $= 1 = \frac{1}{1} = \frac{c}{a}$	(<i>iii</i>)			
	From equations (<i>ii</i>) and (<i>iii</i>), we get a = 1, b = -1, c = 1. Substituting these values in equation (<i>i</i>), we get				
	Polynomial $f(x) = x^2 - x + 1$.				
	or $f(x) = k(x^2 - x + 1)$, k is a real number.				
(<i>v</i>)	Let polynomial be $f(x) = ax^2 + bx + c$	(i)			
	Sum of zeroes $= -\frac{1}{4} = -\frac{1}{4} = -\frac{b}{a}$	(ii)			
	Product of zeroes $= \frac{1}{4} = \frac{c}{a}$	(<i>iii</i>)			
	From equations (ii) and (iii), we get				
	a = 4, b = 1, c = 1				
	Substituting these values in equation (i) , we get				
	Polynomial $f(x) = 4x^2 + x + 1$.				
	or $f(x) = k(4x^2 + x + 1)$, k is a real number.				
(vi)	Let polynomial be $f(x) = ax^2 + bx + c$	(<i>i</i>)			
	Sum of zeroes $= 4 = -\frac{(-4)}{1} = -\frac{b}{a}$	(ii)			
	Product of zeroes $= 1 = \frac{1}{1} = \frac{c}{a}$	(<i>iii</i>)			
	From equations (<i>ii</i>) and (<i>iii</i>), we get $a = 1, b = -4, a = 1$				
	a = 1, o = -4, c = 1 Substituting these values in equation (<i>i</i>), we get Polynomial $f(x) = x^2 - 4x + 1$				
	or $f(r) = b(r^2 = 4r \pm 1)$ k is a real number				
	(n - n) = n(n - m + 1), n = n = 1				

For more study materials login to edukalpclasses.com

Chapter- 2 Polynomials

Exerise 2.3

1. Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following: (i) $p(x) = x^3 - 3x^2 + 5x - 3$, $g(x) = x^2 - 2$ (ii) $p(x) = x^4 - 3x^2 + 4x + 5$, $g(x) = x^2 + 1 - x$ (iii) $p(x) = x^4 - 5x + 6$, $g(x) = 2 - x^2$. (i) $p(x) = x^3 - 3x^2 + 5x - 3$ and $g(x) = x^2 - 2$ Sol. $-3x^2 + 7x - 3$ Second term of quotient is $-3x^2$ + 6 $\frac{-}{7x-9}$ + $\frac{-3x^2}{x^2} = -3$ We have quotient q(x) = x - 3 and remainder r(x) = 7x- 9.

(*ii*)
$$p(x) = x^4 - 3x^2 + 4x + 5$$
, $g(x) = x^2 + 1 - x$.
 $x^2 + x - 3$

:. Quotient $q(x) = x^2 + x - 3$; remainder r(x) = 8.

(*iii*)
$$p(x) = x^4 - 5x + 6$$
, $g(x) = 2 - x^2$

Chapter- 2 Polynomials

$$\therefore \quad \text{Quotient } q(x) = -x^2 - 2,$$

remainder $r(x) = -5x + 10.$

- **2.** Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:
- (i) $t^2 3$, $2t^4 + 3t^3 2t^2 9t 12$ (ii) $x^2 + 3x + 1$, $3x^4 + 5x^3 - 7x^2 + 2x + 2$ (iii) $x^3 - 3x + 1$, $x^5 - 4x^3 + x^2 + 3x + 1$. Sol. (i) Let $p(t) = 2t^4 + 3t^3 - 2t^2 - 9t - 12$, $g(t) = t^2$ Let us divide p(t) by g(t)

Sol. (i) Let
$$p(t) = 2t + 3t - 2t - 5t - 12$$
, $g(t) = t - 3$
Let us divide $p(t)$ by $g(t)$
 $2t^2 + 3t + 4$

Here, quotient $q(t) = 2t^2 + 3t + 4$, remainder r(t) = 0. As remainder is 0. Hence, $t^2 - 3$ is a factor of the polynomial

 $2t^4 + 3t^3 - 2t^2 - 9t - 12.$

For more study materials login to edukalpclasses.com

Chapter- 2 Polynomials

(ii) Let us divide second polynomial $p(x) = 3x^4 + 5x^3 - 7x^2 + 2x + 2$ by $q(x) = x^2 + 3x + 1$. $3x^2 - 4x + 2$ First term of quotient $=\frac{3x^4}{x^2}=3x^2$ Second term of quotient $=\frac{-4x^3}{x^2} = -4x$ + + + $2x^2 + 6x + 2$ Third term of quotient $2x^2 + 6x + 2$ $=\frac{2x^2}{x^2}=2$ 0 Here, quotient $q(x) = 3x^2 - 4x + 2$, remainder r(x) = 0We have $3x^4 + 5x^3 - 7x^2 + 2x + 2$ $=(x^{2}+3x+1)(3x^{2}-4x+2)+0$ As remainder is zero. Hence, first polynomial is a factor of the second polynomial. (iii) Let $p(x) = x^5 - 4x^3 + x^2 + 3x + 1$, $g(x) = x^3 - 3x + 1$ Let us divide p(x) by q(x). $x^2 - 1$ $x^3 - 3x + 1$ $x^5 - 4x^3 + x^2 + 3x + 1$ First term of quotient $=\frac{x^5}{x^3}=x^2$ Second term of quotient $-x^3 + 3x - 1$ $=\frac{-x^3}{x^3}=-1$ + - + $\mathbf{2}$

> Here, quotient $q(x) = x^2 - 1$, remainder r(x) = 2As remainder is not zero.

Hence, $x^3 - 3x + 1$ is not a factor of $x^5 - 4x^3 + x^2 + 3x + 1$.

For more study materials login to edukalpclasses.com

Chapter- 2 Polynomials

3. Obtain all other zeroes of $3x^4 + 6x^3 - 2x^2 - 10x - 5$, if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.

Sol. Two zeroes of polynomial $3x^4 + 6x^3 - 2x^2 - 10x - 5$ are

$$x = \sqrt{\frac{5}{3}}$$
 and $x = -\sqrt{\frac{5}{3}}$

: $(\sqrt{3} x - \sqrt{5})$ and $(\sqrt{3} x + \sqrt{5})$ are factors of the polynomial

 $3x^4 + 6x^3 - 2x^2 - 10x - 5$

 $\Rightarrow (\sqrt{3} x - \sqrt{5})(\sqrt{3} x + \sqrt{5}) = 3x^2 - 5 \text{ is a factor of the polynomial}$

$$3x^4 + 6x^3 - 2x^2 - 10x - 5$$

Let us use division algorithm to find other zeroes. Dividing $3r^4 + 6r^3 - 2r^2 - 10r - 5$ by $(3r^2 - 5)$

$$x^{2} + 2x + 1$$

$$3x^{2} - 5 \begin{vmatrix} 3x^{4} + 6x^{3} - 2x^{2} - 10x - 5 \\ 3x^{4} - 5x^{2} \\ - + \end{vmatrix}$$
 First term of quotient
$$3x^{4} - 5x^{2} \\ - + \\ 6x^{3} + 3x^{2} - 10x - 5 \\ 6x^{3} - 10x \\ - + \\ 3x^{2} - 5 \\ - + \\ 0 \end{vmatrix}$$
 Second term of quotient
$$\frac{6x^{3}}{3x^{2}} = 2x$$

Third term of quotient
$$\frac{3x^{2} - 5}{3x^{2}} = 1$$

By division algorithm, we have

$$3x^{4} + 6x^{3} - 2x^{2} - 10x - 5 = (3x^{2} - 5)(x^{2} + 2x + 1)$$
$$= (3x^{2} - 5)(x + 1)^{2}$$

Other zeroes of the polynomial are -1, -1.

[By using x + 1 = 0]

For more study materials login to edukalpclasses.com

Chapter- 2 Polynomials

Hence, zeroes of the polynomial

$$3x^4 + 6x^3 - 2x^2 - 10x - 5$$
 are
 $\sqrt{\frac{5}{3}}, -\sqrt{\frac{5}{3}}, -1$ and -1 .

- **4.** On dividing $x^3 3x^2 + x + 2$ by a polynomial g(x), the quotient and remainder were x 2 and -2x + 4, respectively. Find g(x).
- **Sol.** We have $p(x) = x^3 3x^2 + x + 2$, g(x),

$$q(x) = x - 2$$
 and $r(x) = -2x + 4$.

Using division algorithm, we have

$$p(x) = g(x) \times q(x) + r(x)$$

$$\Rightarrow x^{3} - 3x^{2} + x + 2 = g(x) \times (x - 2) + (-2x + 4)$$

$$\Rightarrow x^{3} - 3x^{2} + x + 2 + 2x - 4 = g(x) \times (x - 2)$$

$$\Rightarrow g(x) \times (x - 2) = x^{3} - 3x^{2} + 3x - 2$$

$$g(x) = \frac{x^{3} - 3x^{2} + 3x - 2}{x - 2}$$

$$r + 1$$

$$x - 2 \qquad x^{3} - 3x^{2} + 3x - 2$$

$$r^{3} - 2x^{2}$$

$$r^{4} - x + 1$$

$$r^{2} + 3x - 2$$

$$r^{2} + 2x$$

$$r^{2} - x^{2} + 2x$$

$$r^{2} - x$$

Hence, $g(x) = x^2 - x + 1$.

- **5.** Give examples of polynomials p(x), g(x), q(x) and r(x), which satisfy the division algorithm and
 - (i) $deg \ p(x) = deg \ q(x)$ (ii) $deg \ q(x) = deg \ r(x)$

(iii)
$$deg r(x) = 0$$

Sol. (i) Let
$$p(x) = 3x^2 + 6x - 11$$
 and $g(x) = 3$

For more study materials login to edukalpclasses.com

Chapter- 2 Polynomials

Then $q(x) = x^2 + 2x - 3$, r(x) = -2Here, deg p(x) = deg q(x)

- (*ii*) Let $p(x) = x^3 + 6x^2 + 5x$ and $g(x) = x^2 + 2$ Then q(x) = x + 6, r(x) = -x - 12Here, deg q(x) = deg r(x).
- (*iii*) Let $p(x) = 3x^3 + 5x^2 6x + 7$ and g(x) = x 1Then $q(x) = 3x^2 + 8x + 2$, r(x) = 9Here, deg r(x) = 0**Note:** Each of (*i*), (*ii*) and (*iii*) has several examples.

Chapter- 2 Polynomials

Exerise 2.4

1. Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case:

_

(i)
$$2x^3 + x^2 - 5x + 2; \frac{1}{2}, 1, -2$$

(ii) $x^3 - 4x^2 + 5x - 2; 2, 1, 1$
Sol. (i) Let $p(x) = 2x^3 + x^2 - 5x + 2$
If $\frac{1}{2}$, 1, -2 are zeroes of $p(x)$, then
 $p\left(\frac{1}{2}\right) = 0, p(1) = 0$ and $p(-2) = 0$.
Let us verify.
 $p\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^2 - 5 \times \frac{1}{2} + 2$
 $= \frac{2}{8} + \frac{1}{4} - \frac{5}{2} + 2$
 $= \frac{2+2-20+16}{8} = \frac{0}{8} = 0.$
 $p(1) = 2(1)^3 + (1)^2 - 5(1) + 2 = 2 + 1 - 5 + 2 = 2$

$$p(1) = 2(1)^{3} + (1)^{2} - 5(1) + 2 = 2 + 1 - 5 + 2 = 0.$$

$$p(-2) = 2(-2)^{3} + (-2)^{2} - 5 \times (-2) + 2$$

$$= -16 + 4 + 10 + 2 = 0$$

For more study materials login to edukalpclasses.com

Chapter- 2 Polynomials

Hence, we can say $\alpha = \frac{1}{2}$, $\beta = 1$, $\gamma = -2$ are zeroes of p(x). **Relationship:** $\alpha + \beta + \gamma = \frac{1}{2} + 1 - 2 = \frac{1}{2} - 1 = -\frac{1}{2}$ $= \frac{-\text{Coefficient of } x^2}{\text{Coefficient of } r^3}$ $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{1}{2} \times 1 + 1 \times (-2) + (-2) \times \frac{1}{2}$ $=\frac{1}{2} + (-2) - 1 = -\frac{5}{2} = -\frac{5}{2}$ $= \frac{\text{Coefficient of } x}{\text{Coefficient of } x^3}$ $\alpha\beta\gamma = \frac{1}{2} \times 1 \times (-2) = -1 = -\frac{(2)}{2}$ and $= - \frac{\text{Constant term}}{\text{Coefficient of } x^3}.$ Hence, relationship is verified. (*ii*) Let $q(x) = x^3 - 4x^2 + 5x - 2$ If 2, 1 and 1 are zeroes of q(x), then q(2) = 0 and q(1) = 0.Let us verify. Now $q(2) = (2)^3 - 4(2)^2 + 5(2) - 2 = 0 = 8 - 16 + 10 - 2 = 0$ $a(1) = (1)^3 - 4(1)^2 + 5(1) - 2 = 1 - 4 + 5 - 2 = 0$ Hence, verified. Let $\alpha = 2$, $\beta = 1$, $\gamma = 1$. **Relationship:** Sum of zeroes = $\alpha + \beta + \gamma = 2 + 1 + 1 = 4$ $= -\frac{(-4)}{1} = -\frac{\text{Coefficient of } x^2}{\text{Coefficient of } x^3}$ Sum of product of zeroes taken in pair $= \alpha\beta + \beta\gamma + \gamma\alpha = 2 + 1 + 2 = 5$ $=\frac{5}{1}=\frac{\text{Coefficient of }x}{\text{Coefficient of }r^3}$

For more study materials login to edukalpclasses.com

Chapter- 2 Polynomials

Product of zeroes =
$$\alpha\beta\gamma = 2 = \frac{2}{1} = -\frac{(-2)}{1}$$

Constant term

 $= - \frac{\text{Constant term}}{\text{Coefficient of } x^3}$

Hence, relationship is verified.

- Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, -7, -14 respectively.
- **Sol.** Let polynomial be $f(x) = ax^3 + bx^2 + cx + d$...(*i*) Let α , β and γ be the zeroes of the polynomial

Given,
$$\alpha + \beta + \gamma = 2 = \frac{-(-2)}{1} = -\frac{b}{a}$$
 ...(*ii*)

$$\alpha\beta + \beta\gamma + \gamma\alpha = -7 = \frac{-7}{1} = \frac{c}{a} \qquad \dots (iii)$$

$$\alpha\beta\gamma = -14 = -\frac{14}{1} = -\frac{d}{a}$$
 ...(*iv*)

From (*ii*), (*iii*) and (*iv*), we have a = 1, b = -2, c = -7, d = 14.Substituting these values in (*i*), we get $f(x) = x^3 - 2x^2 - 7x + 14$ or $f(x) = k(x^3 - 2x^2 - 7x + 14),$

3. If the zeroes of the polynomial $x^3 - 3x^2 + x + 1$ are a - b, a, a + b, find a and b.

Sol. Let the given polynomial be $Ax^3 + Bx^2 + Cx + D$ Here, A = 1, B = -3, C = 1, D = 1Zeroes are a - b, a and a + b.

Sum of zeroes
$$= -\frac{B}{A}$$

 $\Rightarrow \quad a - b + a + a + b = 3$
 $\Rightarrow \quad 3a = 3 \qquad \Rightarrow \quad a = 1.$
Product of zeroes $= -\frac{D}{A}$
 $\Rightarrow \quad (a - b) \ a \ (a + b) = -\frac{1}{1}$
 $\Rightarrow \quad (1 - b) \ . \ 1 \ . \ (1 + b) = -1$

For more study materials login to edukalpclasses.com

where k is a real number.

Chapter- 2 Polynomials

	\Rightarrow	$1 - b^2 = -1$					
	\Rightarrow	$b^2 = 2 \implies b = \pm$	$\sqrt{2}$				
4.	Hence, a If two ze	$a = 1, b = \pm \sqrt{2}$. eroes of the polynomial $x^4 - 6$	$\delta x^3 - 26x^2 + 138x$				
	– 35 are	$2~\pm~\sqrt{3}$, find other zeroes.					
Sol.	Given polynomial $p(x) = x^4 - 6x^3 - 26x^2 + 138x - 35$						
	As two z	zeroes are $x = 2 \pm \sqrt{3}$.					
	So, $\{x - (2 + \sqrt{3})\}$ $\{x - (2 - \sqrt{3})\}$ is a factor of $p(x)$.						
	<i>i.e.</i> , (x ²	-4x + 1) is a factor of $p(x)$.					
		$r^2 - 2r - 35$					
x ² -	-4x + 1	$ \begin{array}{r} x^{4} - 6x^{3} - 26x^{2} + 138x - 35 \\ x^{4} - 4x^{3} + x^{2} \\ - + - \\ - 2x^{3} - 27x^{2} + 138x - 35 \\ - 2x^{3} + 8x^{2} - 2x \\ + - + \\ - 35x^{2} + 140x - 35 \\ - 35x^{2} + 140x - 35 \\ + - + \\ \hline 0 \end{array} $	First term of quotient $= \frac{x^4}{x^2} = x^2$ Second term of quotient $= \frac{-2x^3}{x^2} = -2x$ Third term of quotient $= \frac{-35x^2}{x^2} = -25$				
	$\mathbf{r}(\mathbf{x})$	$-(m^2 - 4m + 1)(m^2 - 2m - 25)$	$= x^2 = -35$				
	$\therefore p(x) = (x^2 - 4x + 1)(x^2 - 2x - 35)$						
	For othe	r zeroes, $x^2 - 2x - 35 = 0$.					
	\Rightarrow	x - 7x + 5x - 55 = 0					
	\rightarrow	x(x - 7) + 5(x - 7) = 0 (x + 5)(x - 7) = 0					
	\rightarrow	x + 5 = 0, x - 7 = 0					
	\Rightarrow	x = -5.7					
	Hence, o	ther zeroes are -5 and 7.					

5. If the polynomial $x^4 - 6x^3 + 16x^2 - 25x + 10$ is divided by another polynomial $x^2 - 2x + k$, the remainder comes out to be x + a, find k and a.

For more study materials login to edukalpclasses.com

Chapter- 2 Polynomials

Sol.	When	$x^4 - 6x^3 + 16x^2 - 25x + 10$ is divid	ed by $x^2 - 2x$			
	+ k, re	emainder is $x + a$.				
	Using	division algorithm,				
	$x^4 - 6$	$3x^3 + 16x^2 - 25x + 10 = (x^2 - 2x + k) q$	q(x) + (x + a),			
	where	q(x) is quotient.				
	$\Rightarrow x^4$	$- 6x^3 + 16x^2 - 26x + (10 - a) = (x^2 - a)^2 - (10 - a$	2x + k) q(x)			
	$\Rightarrow x^2 - 2x + k$ is a factor of $x^4 - 6x^3 + 16x^2 - 26$					
	-a).		First term			
		$x^2 - 4x + (8 - k)$	of quotient			
<i>x</i> ² –	2x + k	$x^{4} - 6x^{3} + 16x^{2} - 26x + (10 - a)$ $x^{4} - 2x^{3} + kx^{2}$	$= \frac{x^4}{x^2} = x^2$			
		$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Second term of quotient $= \frac{-4x^{3}}{x^{2}}$ $= -4x$ Third term of quotient $= \frac{(8-k)x^{2}}{2}$			
			x = (8 - k)			

As remainder is zero,

 $\begin{array}{rl} \therefore & (-10+2k)x + (k^2 - 8k + 10 - a) = 0 \\ \therefore & -10 + 2k = 0 \text{ and } k^2 - 8k + 10 - a = 0 \\ \Rightarrow & k = 5 \text{ and } 25 - 40 + 10 - a = 0 \\ \Rightarrow & k = 5 \text{ and } a = -5. \end{array}$