Exerise 9.1

- 1. A circus artist is climbing a 20 m long rope, which is tightly stretched and tied from the top of a vertical pole to the ground. Find the height of the pole, if the angle made by the rope with the ground level is 30° (see figure).
 Sol. Let height of the pole AB = x m Length of the rope AC = 20 m In ΔABC, ∠ACB = 30°
 ∴ sin 30° = AB/AC ⇒ 1/2 = x/20 ⇒ x = 10 m
 - \therefore Height of the pole = 10 m.
 - 2. A tree breaks due to storm and the broken part bends so that the top of the tree touches the ground making an angle 30° with it. The distance between the foot of the tree to the

For more study materials login to edukalpclasses.com

point where the top touches the ground is 8 m. Find the height of the tree.

Sol. Let the height of tree before storm be AB. Due to storm it breaks from C such that its top A touches the ground at D and makes an angle of 30° .

Let AC, *i.e.*, DC = x and BC = y; BD = 8 m [Given] \therefore Height of tree = x + y ...(*i*)

In $\triangle BCD$,

3. A contractor plans to install two slides for the children to play in a park. For the children below the age of 5 years, she prefers to have a slide whose top is at a height of 1.5 m, and is inclined at an angle of 30° to the ground, whereas for elder children, she wants to have a steep slide at a height of 3 m, and inclined at an angle of 60° to the ground. What should be the length of the slide in each case?

Sol. For children below 5 years:

Let *x* m be the length of the slide AC and height AB = 1.5 m [Given].

In
$$\triangle ABC$$
, $\angle C = 30^{\circ}$
 $\therefore \quad \frac{AB}{AC} = \sin 30^{\circ} \implies \frac{1.5}{x} = \frac{1}{2} \begin{bmatrix} x \\ 1.5 \\ B \end{bmatrix}$

:. Length of the slide for children below 5 years = 3 m.

For more study materials login to edukalpclasses.com

- :. Length of the slide for elder children = 3.46 m.
- **4.** The angle of elevation of the top of a tower from a point on the ground, which is 30 m away from the foot of the tower, is 30°. Find the height of the tower.
- **Sol.** Let AB be the tower and C be a point on the ground such that BC = 30 m. Also let AB = x m. The angle of elevation of the top A from C is 30°.

So, in right-angled $\triangle ABC$,

$$\frac{AB}{BC} = \tan 30^{\circ} \implies \frac{x}{30} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow x = \frac{30}{\sqrt{3}} = 10\sqrt{3} = 10 \times 1.732 = 17.32 \text{ m}$$

Hence, height of the tower is 17.32 m.

- **5.** A kite is flying at a height of 60 m above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination of the string with the ground is 60°. Find the length of the string, assuming that there is no slack in the string.
- **Sol.** Let P be the temporarily position of the kite of which string is tied to a point O on the ground. Such that $\angle POQ$ is 60°, where Q is the point on the ground just below P. Therefore, PQ = 60 m. In $\triangle POQ$,

For more study materials login to edukalpclasses.com

$$\frac{OP}{PQ} = \operatorname{cosec} \ 60^{\circ}$$
$$\Rightarrow \quad \frac{x}{60} = \frac{2}{\sqrt{3}} \quad \Rightarrow \quad x = \frac{120}{\sqrt{3}} = 40\sqrt{3} \quad \text{m}$$

Hence, length of the string is $40\sqrt{3}$ m.

- **6.** A 1.5 m tall boy is standing at some distance from a 30 m tall building. The angle of elevation from his eyes to the top of the building increases from 30° to 60° as he walks towards the building. Find the distance he walked towards the building.
- Sol. Let a 1.5 m tall boy DP finds the angle of elevation to the top A of the building A.

Let DCB be the horizontal eye sight. When that boy walks towards the building finds increased angle of 60° at C.

Given: AQ = 30 m.

$$\begin{array}{c|c} D & T & T \\ 1.5 m & X & C & Y \\ P & Q \\ \end{array}$$

30°

$$AB = AB - BQ = (30 - 1.5) m = 28.5 m.$$

In right-angled $\triangle ABC$,

$$\frac{BC}{AB} = \cot 60^{\circ} \implies \frac{y}{28.5} = \frac{1}{\sqrt{3}}$$
$$\implies y = \frac{28.5}{\sqrt{3}} = 16.45 \text{ m} \qquad \dots(i)$$

In right-angled Δ ABD,

$$\frac{\text{BD}}{\text{AB}} = \cot \ 30^{\circ} \implies \sqrt{3} = \frac{x+y}{28.5}$$

$$\Rightarrow x + y = 28.5 \times \sqrt{3} = 49.36 \text{ m}$$

Putting from (i), we get

 \Rightarrow x = (49.36 - 16.45) m = 32.91 m.

Hence, the distance he walked towards the building is 32.91 m.

7. From a point on the ground, the angles of elevation of the bottom and the top of a transmission tower fixed at the top

For more study materials login to edukalpclasses.com

4

30 m

of a 20 m high building are 45° and 60° respectively. Find the height of the tower.

Sol. Let AD be the transmission tower fixed at the top A of the building BA of 20 m high. Angles of elevation of A and D from a point C on the ground are 45° and 60° respectively, *i.e.*, $\angle ACB = 45^{\circ}$ and $\angle DCB = 60^{\circ}$ Let AD = x m and BC = y m

In right-angled $\triangle ABC$,

$$\frac{BC}{AB} = \cot 45^{\circ} \implies \frac{y}{20} = 1 \implies y = 20 \qquad \dots(i)$$

In right $\triangle DBC$, $\frac{DB}{BC} = \tan 60^{\circ}$
 $\implies \frac{x+20}{y} = \sqrt{3} \implies x+20$
 $= \sqrt{3} y \qquad \dots(ii)$
From (i) and (ii), we get
 $x + 20 = 20 \sqrt{3}$
 $\implies x = 20 \sqrt{3} - 20 = 20(1.732 - 1) = 14.64 \text{ m}$

Hence, the height of the tower is 14.64 m.

- 8. A statue, 1.6 m tall, stands on the top of a pedestal. From a point on the ground, the angle of elevation of the top of the statue is 60° and from the same point the angle of elevation of the top of the pedestal is 45°. Find the height of the pedestal.
- **Sol.** Let height of pedestal AB = x m. Height of statue BC = 1.6 m

 $\angle AOB = 45^{\circ}, \ \angle AOC = 60^{\circ}$

In right-angled $\triangle OAB$,

$$\frac{OA}{AB} = \cot 45^{\circ}$$

$$O^{A}_{A5^{\circ}} = 1 \implies OA = x$$

For more study materials login to edukalpclasses.com

С

В

xm

...(*i*)

1.6 m

Also in right-angled triangle OAC,

$$\frac{OA}{AC} = \cot \ 60^{\circ} \implies \frac{x}{x+1.6} = \frac{1}{\sqrt{3}} \qquad [From \ (i)]$$

$$\implies \sqrt{3} \ x = x + 1.6 \implies (\sqrt{3} - 1)x = 1.6$$

$$x = \frac{1.6}{\sqrt{3} - 1} = \frac{1.6(\sqrt{3} + 1)}{2} = 0.8(\sqrt{3} + 1) \ m$$

:. Height of pedestal = $0.8(\sqrt{3} + 1)$ m or 2.19 m.

- **9.** The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 60°. If the tower is 50 m high, find the height of the building.
- **Sol.** In the figure, CD is a tower of 50 m high and AB is a building.

10. Two poles of equal heights are standing opposite each other on either side of the road, which is 80 m wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30°, respectively. Find the

For more study materials login to edukalpclasses.com

heights of the poles and the distances of the point from the poles.

Sol. Let height of the each pole = h m.

Let BE = x m, ED = (80 - x) m.

 $\angle AEB = 60^\circ, \angle CED = 30^\circ$

In right-angled triangle ABE,

$$\frac{\text{AB}}{\text{BE}} = \tan 60^\circ \implies \frac{h}{x} = \sqrt{3} \implies h = \sqrt{3} x \quad ...(i)$$

In right-angled triangle CDE,

$$\frac{\text{CD}}{\text{DE}} = \tan 30^{\circ}$$

$$\frac{h}{80 - x} = \frac{1}{\sqrt{3}} \implies h = \frac{80 - x}{\sqrt{3}} \qquad \dots (ii)$$

From (i) and (ii), we get

$$\sqrt{3} x = \frac{80 - x}{\sqrt{3}} \implies 3x = 80 - x$$

 $\Rightarrow \qquad 4 \ x = 80 \qquad \Rightarrow \qquad x = 20 \ \mathrm{m}$

:. Distance of the point from one pole = 20 m. Substituting in (i), we get

$$h = 20\sqrt{3}$$
 m

- :. Height of each pole = $20\sqrt{3}$ m.
- 11. A TV tower stands vertically on a bank of a canal. From a point on the other bank directly opposite the tower, the angle of elevation of the top of the tower is 60° . From another point 20 m away from this point on the line joining this point to the foot of the tower, the angle of elevation of the top of the tower is 30° (see figure). Find the height of the tower and the width of the canal.

For more study materials login to edukalpclasses.com

Sol. Let width (BC) of the canal is x m and height (AB) of the tower is h m.

In right-angled triangle ABC,

$$\frac{AB}{BC} = \tan 60^{\circ} \implies \frac{h}{x} = \sqrt{3} \implies h = \sqrt{3} x \quad ...(i)$$

right-angled triangle ABD,
$$\frac{AB}{BD} = \tan 30^{\circ} \implies \frac{h}{20+x} = \frac{1}{\sqrt{3}}$$

$$h = \frac{20 + x}{\sqrt{3}}$$

In

 \Rightarrow

 \Rightarrow

From (i) and (ii), we get

$$\sqrt{3} x = \frac{20 + x}{\sqrt{3}} \implies 3x = 20 + x$$
$$2x = 20 \implies x = 10 \text{ m}$$

 \therefore Width of the canal = 10 m.

Substituting in (i), we get $h = 10\sqrt{3}$ m

- :. Height of the TV tower = $10\sqrt{3}$ m.
- 12. From the top of a 7 m high building, the angle of elevation of the top of a cable tower is 60° and the angle of depression of its foot is 45° . Determine the height of the tower.
- **Sol.** In the figure, AB represents a 7 m high building and PQ represents a cable tower. Angle of elevation to the top P from A is 60° and angle of depression to the bottom Q from same point A is 45° .

For more study materials login to edukalpclasses.com

8

...(*ii*)

So, $\angle PAR = 60^{\circ}$ and $\angle RAQ = 45^{\circ} = \angle AQB$. Let AB = 7 m = QR, AR = BQ = x m and PR = y mIn rt $\triangle ABQ$, $\frac{AB}{BQ} = \tan 45^{\circ} \Rightarrow \frac{7}{x} = 1$ $\Rightarrow x = 7 \text{ m} \dots(i)$ In rt $\triangle PRA$, $\frac{PR}{AR} = \tan 60^{\circ} \Rightarrow \frac{y}{x} = \sqrt{3}$ $\Rightarrow y = \sqrt{3} x = 7\sqrt{3} \text{ m}$ [From (i)] \therefore Height of the tower = $7 + y = (7 + 7\sqrt{3}) \text{ m}$

Eight of the tower = $7 + y = (7 + 7\sqrt{3})$ in

=
$$7(1 + \sqrt{3})$$
 m = 7×2.732 m
= 19.12 m.

- 13. As observed from the top of a 75 m high lighthouse from the sea-level, the angles of depression of two ships are 30° and 45° . If one ship is exactly behind the other on the same side of the lighthouse, find the distance between the two ships.
- **Sol.** In the figure, AB represents a 75 m high lighthouse, C and D are the positions of two ships where angles of depression from top of the tower are 45° and 30° respectively.

Let BC = x m and BD = y m.

We have to find the distance between the two ships,

i.e.,
$$CD = BD - BC = y - x$$

In right-angled $\triangle ABC$,

$$\frac{BC}{AB} = \cot 45^{\circ}$$

$$\Rightarrow \frac{x}{75} = 1$$

$$\Rightarrow x = 75 \text{ m}$$
In right-angled $\triangle ABD$,
$$\frac{BD}{AB} = \cot 30^{\circ} \Rightarrow \frac{y}{75} = \sqrt{3}$$

For more study materials login to edukalpclasses.com

Chapter-9 Application of Trigonometry Class 10

$$\Rightarrow$$
 $y = 75\sqrt{3}$ m

The distance between two ships

$$= y - x = 75\sqrt{3} - 75 = 75(\sqrt{3} - 1)$$
 m.

14. A 1.2 m tall girl spots a balloon moving with the wind in a horizontal line at a height of 88.2 m from the ground. The angle of elevation of the balloon from the eyes of the girl at any instant is 60°. After some time, the angle of elevation reduces to 30° (see Fig.). Find the distance travelled by the balloon during the interval.

Sol. When the horizontally moving balloon is at P, a girl AB (say) finds $\angle PAC$ is 60° and at the position R, $\angle RAD$ is 30°.

We have to find the distance travelled in horizontal line, i.e., PR or CD.

Р

Consider PC = PQ - CQ = (88.2 - 1.2) m = 87 m = RDIn rt $\triangle ACP$,

tan
$$60^{\circ} = \frac{PC}{AC}$$

 $\Rightarrow \sqrt{3} = \frac{87}{AC}$
 $\Rightarrow AC = \frac{87}{\sqrt{3}}$
In $\triangle ADR$,
tan $30^{\circ} = \frac{RD}{AD} \Rightarrow \frac{1}{\sqrt{3}} = \frac{87}{AD} \Rightarrow AD = 87\sqrt{3}$...(*ii*)

For more study materials login to edukalpclasses.com

Now CD = AD - AC

$$= 87\sqrt{3} - \frac{87}{\sqrt{3}} = 87\frac{(3-1)}{\sqrt{3}} = \frac{87\times2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$

[From (i) and (ii)]

 $= 29 \times 2 \times \sqrt{3} = 58\sqrt{3}$

- \therefore The distance travelled by the balloon during the interval is $58\sqrt{3}$ m.
- **15.** A straight highway leads to the foot of a tower. A man standing at the top of the tower observes a car at an angle of depression of 30°, which is approaching the foot of the tower with a uniform speed. Six seconds later, the angle of depression of the car is found to be 60°. Find the time taken by the car to reach the foot of the tower from this point.
- Sol. Let AB be the tower on the top of which a man is standing and finds angle of depression to the position D of the running car as 30° .

After 6 seconds, angle is found 60° at C.

Let AB = h m, DC = x m and BC = y m.

When car is at D:

$$\frac{x+y}{h} = \cot 30^{\circ}$$

 $\Rightarrow x + y = \sqrt{3} h \qquad \dots(i)$ When car is at C:

$$\frac{y}{h} = \cot 60^\circ \implies \frac{y}{h} = \frac{1}{\sqrt{3}} \implies h = \sqrt{3} y \qquad ...(ii)$$

์ 30°

xm

60° ^{(30°}

<u>∕</u>60° C v

vm

hm

From (i) and (ii), we have

$$x + y = \sqrt{3} \cdot \sqrt{3} y = 3y \implies x = 2y \implies y = \frac{x}{2}$$

 \therefore Distance *x* is covered in 6 seconds

 \therefore Distance y, *i.e.*, $\frac{x}{2}$ is covered in 3 seconds.

16. The angles of elevation of the top of a tower from two points at a distance of 4 m and 9 m from the base of the tower

For more study materials login to edukalpclasses.com

and in the same straight line with it are complementary. Prove that the height of the tower is 6 m.

Sol. In the drawn figure, AB represents a tower, C and D are two points distant 4 m and 9 m away from the base B. Let angle of elevation to the top A from C is α and from D is $90^{\circ} - \alpha$. A

In right-angled AABC

In right angled Linbo,

$$\frac{h}{4} = \tan \alpha \qquad ...(i)$$
In right-angled $\triangle ABD$,

$$\frac{h}{9} = \tan (90^{\circ} - \alpha)$$

$$\Rightarrow \qquad \frac{h}{9} = \cot \alpha \qquad ...(ii)$$
Multiplying the corresponding sides of (i) and (ii), we get

$$\frac{h}{4} \cdot \frac{h}{9} = \tan \alpha \cdot \cot \alpha \Rightarrow \frac{h^2}{36} = 1$$

$$\Rightarrow \qquad h^2 = 36 \qquad \Rightarrow \qquad h = 6$$

Height of the tower = 6 m. Hence proved. ...

For more study materials login to edukalpclasses.com