Chapter- 10 Circles

Exerise 10.1

1. *How many tangents can a circle have?* **Sol.** A circle can have infinitely many tangents.

- **2.** Fill in the blanks:
 - (i) A tangent to a circle intersects it in _____ point(s).
 - (ii) A line intersecting a circle in two points is called a
 - (iii) A circle can have _____ parallel tangents at the most.
 - (iv) The common point of a tangent to a circle and the circle is called _____.
- Sol. (i) one (ii) secant (iii) two (iv) point of contact.
 - **3.** A tangent PQ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q so that OQ = 12 cm. Length PQ is:
 - (A) 12 cm (B) 13 cm (C) 8.5 cm (D) $\sqrt{119}$ cm.
- **Sol.** (D).
 - **4.** Draw a circle and two lines parallel to a given line such that one is a tangent and the other, a secant to the circle.

Sol.

Here l is the given line. m and n are respectively, a tangent and a secant to a given circle with centre O and parallel to line l.

For more study materials login to edukalpclasses.com

Chapter- 10 Circles

Exerise 10.2

In Q. 1 to 3, choose the correct option and give justification.

1. From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm. The radius of the circle is

(A) 7 cm (B) 12 cm (C) 15 cm (D) 24.5 cm.

Р

110°

Q

Sol. $r = \sqrt{(25)^2 - (24)^2}$ cm = 7 cm.

Option (A) is correct.

2. In figure, if TP and TQ are the two tangents to a circle with centre O so that $\angle POQ = 110^{\circ}$, then $\angle PTQ$ is equal to (A) 60° (B) 70° (C) 80° (D) 90° .

Sol. : TQ and TP are tangents to a circle with centre O. such that \angle POQ = 110°

 $\therefore \ OP \perp PT \ \ and \ \ OQ \perp QT$

$$\Rightarrow \angle \text{OPT} = 90 \text{ and } \angle \text{OQT} = 90^{\circ}$$

Now, in the quadrilateral TPOQ, we get

For more study materials login to edukalpclasses.com

Chapter- 10 Circles

 $\therefore \angle PTQ + 90^{\circ} + 110^{\circ} + 90^{\circ} = 360^{\circ}$ $\Rightarrow \qquad \angle PTQ + 290^{\circ} = 360^{\circ}$ $\Rightarrow \qquad \angle PTQ = 360^{\circ} - 290^{\circ} = 70^{\circ}$

Thus, the correct option is (B).

- If tangents PA and PB from a point P to a circle with centre O are inclined to each other at angle of 80°, then ∠POA is equal to
 - (A) 50° (B) 60° (C) 70° (D) 80° .

Sol.
$$\angle POA = \frac{1}{2} \angle AOB = \frac{1}{2} \times 100^{\circ} = 50^{\circ}.$$

Option (A) is correct.

4. Prove that the tangents drawn at the ends of a diameter of a circle are parallel.

Sol. In the figure, we have:

PQ is diameter of the given circle and O is its centre.

Let tangents AB and CD be drawn at the end points of the diameter PQ.

Since the tangent at a point to a circle is perpendicular to the radius through the point.

For more study materials login to edukalpclasses.com

·.

Chapter-10 Circles

But they form a pair of alternate angles.

AB || CD.

- 5. Prove that the perpendicular at the point of contact to the tangent to a circle passes through the centre.
- **Sol.** Let perpendicular at the point of contact to the tangent does not pass through at centre.

O'P + PT $\dots(i)$ [Given]

Join OP. As OP is radius.

 $\therefore \text{ OP} \perp \text{PT}$

[Radius is perpendicular to tangent at the point of contact]

...(*ii*)

From (i) and (ii), we get

OP and O'P are perpendicular to PT

 \Rightarrow OP and O'P must coincide.

As only one perpendicular can be drawn from a point on a line.

Hence perpendicular from the point of contact, passes through the centre.

6. The length of a tangent from a point A at distance 5 cm from the centre of the circle is 4 cm. Find the radius of the circle.

Sol. OT =
$$\sqrt{5^2 - 4^2}$$

 $cm = \sqrt{9} cm = 3 cm.$

- 7. Two concentric circles are of radii 5 cm and 3 cm. Find the length of the chord of the larger circle which touches the smaller circle.
- Sol. OA = 5 cm, OT = 3 cmAlso $OT \perp AB$,

Therefore, AT = $\sqrt{25-9}$ cm = 4 cm

$$\therefore$$
 AB = 2AT = 8 cm.

$$AB + CD = AD + BC$$

For more study materials login to edukalpclasses.com

Chapter- 10 Circles

Sol. We have AS = AP; BP = BQ; CQ = CR and DR = DS. Consider AB + CD = (AP + PB) + (CR + RD)

$$=$$
 AS + BQ + CQ + DS

$$= (AS + DS) + (BQ + CQ)$$

Х

 \leftarrow

= AD + BC.

Hence proved.

Р

0

Q

Ρ

C

O B

R

3

9. In figure, XY and XY' are two parallel tangents to a circle with centre O and another tangent AB with point of contact C interesting XY at A and XY' at B. Prove that ∠AOB = 90°.

D. Frove that $\angle AOB = 90^{\circ}$. Sol. Given: A circle with centre O has three tangents XY, X'Y' and AB at the points P, Q and C respectively. Also XY || X'Y'. To prove: $\angle AOB = 90^{\circ}$

Construction: Join OC, OP, OQ. $\leftarrow_{X'}$

Proof: In $\triangle AOP$ and $\triangle AOC$,

PA = PC [Two tangents drawn from a point outside the circle] PO = CO [Radii of same circle] AO = AO [Common] Therefore, $\triangle AOP \cong \triangle AOC$ [SSS criterion)]

 \therefore $\angle 1 = \angle 2$

Similarly, we can prove that

$$\angle 3 = \angle 4$$
 ...(*ii*)

For more study materials login to edukalpclasses.com

5

...(*i*)

Chapter- 10 Circles

the same side of transversal] $\Rightarrow 2\angle 2 + 2\angle 3 = 180^{\circ}$ [Using (i) and (ii)] $\Rightarrow \angle 2 + \angle 3 = 90^{\circ}$ [Sum of angles of a triangle is 180°] $\Rightarrow \angle AOB = 90^{\circ}$. Hence proved.	[Sum of interior angles on	Now, $\angle PAB + \angle QBA = 180^{\circ}$	Now,
$\begin{array}{llllllllllllllllllllllllllllllllllll$	the same side of transversal]		
$\Rightarrow \qquad ∠2 + ∠3 = 90^{\circ} \qquad [Sum of angles of a triangle is 180^{\circ}]$ $\Rightarrow \qquad ∠AOB = 90^{\circ}. \qquad Hence proved.$	[Using (i) and (ii)]	$\Rightarrow \qquad 2\angle 2 + 2\angle 3 = 180^{\circ}$	\Rightarrow
$\Rightarrow \qquad \angle AOB = 90^{\circ}. \qquad \qquad \textbf{Hence proved.}$	[Sum of angles of a triangle	$\Rightarrow \qquad \angle 2 + \angle 3 = 90^{\circ}$	\Rightarrow
$\Rightarrow \qquad \angle AOB = 90^{\circ}. \qquad Hence proved.$	is 180°]		
	Hence proved.	$\Rightarrow \qquad \angle AOB = 90^{\circ}.$	\Rightarrow

- 10. Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the centre.
- Sol. $\angle OAP = \angle OBP = 90^{\circ} \dots (i)$ Also $\angle AOB + \angle OBP +$ $\angle BPA + \angle OAP = 360^{\circ}$ [Sum of angles of a quadrilateral is 360°] $\Rightarrow \angle AOB + 90^{\circ} + \angle BPA + 90^{\circ} = 360^{\circ}$ $\Rightarrow \angle AOB + 2BPA = 180^{\circ}.$
 - **11.** Prove that the parallelogram circumscribing a circle is a rhombus.

Sol. AB = CD and BC = DA (i) AB + CD = AP + BP + CR + DR = AS + BQ + CQ + DS= AD + BC

$$\Rightarrow$$
 2AB = 2AD

 \Rightarrow AB = AD

As adjacent sides of a parallelogram are equal.

:. Parallelogram is a rhombus.

12. A triangle ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC into which BC is divided by the point of contact D are of

Ŕ

For more study materials login to edukalpclasses.com

Chapter- 10 Circles

lengths 8 cm and 6 cm respectively (see figure). Find the sides AB and AC.

Sol. Let the circumcircle touches AB and AC at E and F respectively.

Join OA, OB, OC, OE and OF.

For more study materials login to edukalpclasses.com

Chapter- 10 Circles

Now, putting these values in eqn. (i), we have $\sqrt{48x(14+x)} = (16+2x) + (28) + (12+2x)$ $\sqrt{48x(14+x)} = 56 + 4x = 4(14 + x)$ \Rightarrow $48x(14 + x) = 16(14 + x)^2$ [Squaring both sides] \Rightarrow $48x(14 + x) - 16(14 + x)^2 = 0$ \Rightarrow 16(14 + x)(3x - 14 - x) = 0 \Rightarrow 16(14 + x)(2x - 14) = 0 \Rightarrow x = -14, 7 \Rightarrow Ignoring x = -14 because length cannot be negative. x = 7 cm·. Hence, AB = BE + AE = 8 + x = 8 + 7 = 15 cm and AC = CF + AF = 6 + x = 6 + 7 = 13 cm. **13.** Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle. С D $\Lambda AOP \simeq \Lambda AOS$ Sol. [As AP = AS, OP = OS]AO is common] Q $\angle 1 = \angle 8$ S Similarly $\angle 2 = \angle 3$ B $\angle 4 = \angle 5$ 26 = 27 $\angle 1 + \angle 2 + \angle 3 + \angle 4 + \angle 5 + \angle 6 + \angle 7 + \angle 8 = 360^{\circ}$ \Rightarrow $2 \angle 1 + 2 \angle 2 + 2 \angle 6 + 2 \angle 5 = 360^{\circ}$ \Rightarrow $(\angle 1 + \angle 2) + (\angle 6 + \angle 5) = 180^{\circ}$ \Rightarrow $\angle AOB + \angle COD = 180^{\circ}$ \Rightarrow Similarly, we can show $\angle AOD + \angle BOC = 180^{\circ}$

For more study materials login to edukalpclasses.com