

Class X Maths Polynomials

VERY SHORT ANSWER TYPE QUESTIONS

1.	If one zero of the polynomial	omial $P(x) = 5x^2 + 13x + K$ is reciprocal of the other, then
	value of k is	
		CLASCA

(a) 0 (b) 5 (c)
$$\frac{1}{6}$$
 (d) 6

2. If α and β are the zeroes of the polynomial $p(x) = x^2 - p(x+1) - c$ such that $(\alpha + 1)(\beta + 1) = 0$, the c = 1.

3. If one zero of the quadratic polynomial
$$x^2 + 3x + k$$
 is 2, then the value of k is
(a) 10 (b) -10 (c) 5 (d) -5

4. If the zeroes of the quadratic polynomial $x^2 + (a+1)x + b$ are 2 and -3, then
(a) a = -7, b = -1(b) a = 5, b = -1

(a)
$$a = 7, b = -1$$

(b) $a = 3, b = -1$
(c) $a = 2, b = -6$
(d) $a = 0, b = -6$

5. What should be added to the polynomial $x^2 - 5x + 4$, so that 3 is the zero of the resulting polynomial:

6. If α and β are the zeros of the polynomial

$$f(x) = x^2 + x + 1$$
, then $\frac{1}{\alpha} + \frac{1}{\beta} =$

7. If a quadratic polynomial f(x) is not factorizable into linear factors, then it has no real zero. (True/False)

8. If a quadratic polynomial f(x) is a square of a linear polynomial, then its two zeros are coincident. (True/False).

9. If $p(x) = x^3 - 2x^2 - x + 2 = (x+1)(x-2)(x-d)$ then what is the value of d?

Class 10

Polynomials

10. The quadratic polynomial $ax^2 + bx + c$, $a \ne 0$ is represented by this graph then a is

- (a) Natural no. (b) Whole no. (c) Negative Integer (d) Irrational no.
- 11. What will be the number of zeros of a linear polynomial p(x) if its graph (i) passes through the origin. (ii) doesn't intersect or touch x-axis at any point?
- **12.** Find the quadratic polynomial whose zeros are

$$(5+2\sqrt{3})$$
 and $(5-2\sqrt{3})$

- 13. If one zero of $p(x) = 4x^2 (8k^2 40k)x 9$ is negative of the other, find values of k.
- 14. What number should be subtracted to the polynomial $x^2 5x + 4$, so that 3 is a zero of polynomial so obtained.
- **15.** How many (*i*) maximum (*ii*) minimum number of zeroes can a quadratic polynomial have?
- 16. What will be the number of real zeros of the polynomial $x^2 + 1$?
- 17. If α and β are zeros of polynomial $6x^2 7x 3$, then form a quadratic polynomial where zeros are 2α and 2β (CBSE)
- 18. If α and $\frac{1}{\alpha}$ are zeros of $4x^2 17x + k 4$, find the value of k.
- 19. What will be the number of zeros of the polynomials whose graphs are parallel to (i) y-axis (ii) x-axis?
- **20.** What will be the number of zeros of the polynomials whose graphs are either touching or intersecting the axis only at the points:

(i)
$$(-3,0)$$
, $(0,2)$ & $(3,0)$ (ii) $(0,4)$, $(0,0)$ and $(0,-4)$

SHORT ANSWER TYPE (I) QUESTIONS

- **21.** For what value of k, $x^2 4x + k$ touches x-axis.
- 22. If the product of zeros of $ax^2 6x 6$ is 4, find the value of a. Hence find the sum of its zeros.
- 23. If zeros of $x^2 kx + 6$ are in the ratio 3:2, find k.
- **24.** If one zero of the quadratic polynomial $(k^2 + k)x^2 + 68x + 6k$ is reciprocal of the other, find k.

Class 10

Polynomials

- **25.** If α and β are the zeros of the polynomial $x^2 5x + m$ such that $\alpha \beta = 1$, find m. (CBSE)
- **26.** If the sum of squares of zeros of the polynomial $x^2 8x + k$ is 40, find the value of k.
- 27. If α and β are zeros of the polynomial t^2-t-4 , form a quadratic polynomial whose zeros are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$.
- **28.** What should be added to the polynomial $x^3 3x^2 + 6x 15$, so that it is completely divisible by x 3? (CBSE 2016)
- **29.** If *m* and *n* are the zeros of the polynomial $3x^2 + 11x 4$, find the value of $\frac{m}{n} + \frac{n}{m}$. (CBSE, 2012)
- **30.** Find a quadratic polynomial whose zeros are $\frac{3+\sqrt{5}}{5}$ and $\frac{3-\sqrt{5}}{5}$.

(CBSE, 2013)

SHORT ANSWER TYPE (II) QUESTIONS

- **31.** If (k + y) is a factor of each of the polynomials $y^2 + 2y 15$ and $y^3 + a$, find the values of k and a.
- **32.** Obtain zeros of $4\sqrt{3} x^2 + 5x 2\sqrt{3}$ and verify relation between its zeroes and coefficients.
- **34.** -5 is one of the zeros of $2x^2 + px 15$, zeroes of $p(x^2 + x) + k$ are equal to each other. Find the value of k.
- **35.** Find the value of k such that $3x^2 + 2kx + x k 5$ has the sum of zeros as half of their product.
- **36.** If zeros of the polynomial $ax^2 + bx c$, $a \ne 0$ are additive inverse of each other then what is the value of b?
- 37. If α and β are zeros of $x^2 x 2$, find a polynomial whose zeros are $(2\alpha + 1)$ and $(2\beta + 1)$

Polynomials

LONG ANSWER TYPE QUESTIONS

38. If α and β are zeros of the polynomial $x^2 + 4x + 3$, find the polynomial whose zeros

are
$$1 + \frac{\beta}{\alpha}$$
 and $1 + \frac{\alpha}{\beta}$. (CBSE)

- **39.** If zeros of $x^2 5kx + 24$ are in the ratio 3 : 2, findk.
- **40.** Form a quadratic polynomial one of whose zero is $2 + \sqrt{5}$ and sum of the zeros is 4.
- **41.** Form a polynomial whose zeros are the reciprocal of the zeros of $p(x) = ax^2 + bx + c$, $a \ne 0$.
- **42.** If (x + 2) is a factor of $x^2 + px + 2q$ and p + q = 4 then what are the values of p and q?
- **43.** If sum of the zeros of $5x^2 + (p+q+r)x + pqr$ is zero, then find $p^3 + q^3 + r^3$.
- 44. If the zeros of $x^2 + px + q$ are double in value to the zeros of $2x^2 5x 3$ find p and q.

ANSWERS AND HINTS

1.	(b)	5
----	-----	---

3.
$$(b)-10$$

13.
$$k = 0, 5$$

17.
$$[3x^2 - 7x - 6] k$$

23.
$$-5, 5$$

27.
$$4t^2 + t - 1$$

4. (d)
$$a = 0$$
, $b = -6$

12.
$$x^2 - 10x + 13$$

18.
$$k = 8$$

22.
$$a = -\frac{3}{2}$$
, sum of zeroes = -4

28. On dividing $x^3 - 3x^2 + 6x - 15$ by x - 3, remainder is + 3, hence - 3 must be added to $x^3 - 3x^2 + 6x - 15$.

Class 10

Polynomials

29.
$$\frac{m}{n} + \frac{n}{m} = \frac{m^2 + n^2}{mn} = \frac{(m+n)^2 - 2mn}{mn} = \frac{\left(-\frac{11}{3}\right)^2 - 2\left(-\frac{4}{3}\right)}{-\frac{4}{3}} = -\frac{145}{12}$$

30.
$$\alpha + \beta = \frac{6}{5}$$
, $\alpha\beta = \frac{4}{25}$, $25x^2 - 30x + 4$

31.
$$k = -3$$
, 5 and $a = -27$, 125

32.
$$-\frac{2}{\sqrt{3}}$$
, $\frac{\sqrt{3}}{4}$

34.
$$\frac{7}{4}$$

36.
$$b = 0$$

37.
$$x^2 - 4x - 5$$

38.
$$x^2 - \frac{16}{3}x + \frac{16}{3}$$
 or $\frac{1}{3}(3x^2 - 16x + 16)$

39.
$$k = 2$$

40.
$$2 - \sqrt{5}$$

41.
$$k\left[x^2 + \frac{b}{c}x + \frac{a}{c}\right]$$

42.
$$p = 4$$
, $q = 0$

44.
$$a = 1, b = 7$$